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Rejection-free Monte Carlo algorithms for models with continuous degrees of freedom
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We construct a rejection-free Monte Carlo algorithm for a system with continuous degrees of freedom. We
illustrate the algorithm by applying it to the classical three-dimensional Heisenberg model with canonical
Metropolis dynamics. We obtain the lifetime of the metastable state following a reversal of the external
magnetic field. Our rejection-free algorithm obtains results in agreement with a direct implementation of the
Metropolis dynamic and requires orders of magnitude less computational time at low temperatures. The
treatment is general and can be extended to other dynamics and other systems with continuous degrees of
freedom.
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Nucleation and metastability are characteristic behav
of dynamical processes for many different fields, from sto
markets and sociology@1# to parallelization methods fo
massively parallel computers@2# to chemical reactions an
materials science. Many classical models, when simula
with Monte Carlo methods, also present these behaviors,
although the number of steps in the simulation does not n
essarily correspond directly to experimental time, they g
valuable insights into these dynamic phenomena. For
stance, studies on Ising@3# and anisotropic Heisenberg mod
els @4# have shown the existence of different metastable
cay regimes for small ferromagnetic particles after a reve
of the external magnetic field. At low temperatures, sin
and multiple droplet nucleation and a strong field regime
observed, and recently, indirect experimental evidence
these regimes has been found@5#.

Many Monte Carlo dynamics are Markov processes t
divide each step into two successive parts: first, a new sta
chosen; second, it is accepted or rejected according to s
criteria. In many cases of interest, the acceptance rates ca
so small that a huge number of trials is required befor
change is made. Then, a direct implementation of the Mo
Carlo dynamic, one that attempts steps one after the othe
extremely slow. For instance, Ising models with Metropo
dynamics@6# can require 1015 trials to leave a metastabl
state at low temperatures, and such a simulation would
1010 minutes @7#. Therefore, techniques to implement th
same dynamic in a faster way are required.

There exist different techniques to construct rejection-f
implementations of Monte Carlo dynamics for discrete s
systems, such as then-fold way @8,9# and Monte Carlo with
absorbing Markov chains@7# algorithms~for a review, see
@10#!. In this paper, we extend then-fold way rejection-free
technique to systems with continuous degrees of freed
and we construct a rejection-free algorithm for the class

*Permanent address: Dpto. de Fı´sica, Univ. Nacional de Colom
bia, Bogota D.C., Colombia.
1063-651X/2003/67~2!/026101~4!/$20.00 67 0261
rs
k

d
nd
c-
e
-

-
al
e
e
of

t
is

me
be
a
te
is

ke

e
n

,
l

Heisenberg model. Our treatment is completely general
can be extended to other dynamics and other continuous
tems.

Consider a Markov process with every step consisting
two parts. First, choose a movement from statex to state
x8Þx with probabilityT(x8ux). Second, accept it with prob
ability A(x8ux). The full probability to undergo the move
ment (x8ux) is then

W~x8ux!5T~x8ux!A~x8ux!. ~1!

In this paper, the term ‘‘direct implementation’’ refers to th
common selection and rejection implementation of the M
kov process, in which two random numbers are used, one
the selection ofx8 and one for the rejection or acceptance
x8.

In the specific case of importance sampling,T(x8ux) is
chosen to be symmetric,T(x8ux)5T(xux8), andA(x8ux) is
tuned to obtain a desired limit probability distribution,P(x),
when the number of steps tends to infinity. This is acco
plished by requiring the detailed balance condition,

W~x8ux!P~x!5W~xux8!P~x8!. ~2!

To obtain the canonical distribution,P(x)}exp@2Ex /kBT#, a
widely used choice forA(x8ux) is the Metropolis acceptanc
probability

A~x8ux!5nmin$1,exp@2~Ex82Ex!/kBT#%, ~3!

wheren is a constant which is the same for allx andx8 and
is included to ensure that(x8W(x8ux)<1 for all algorithmic
steps. For all discussions presented here,n51 was sufficient
to ensure this condition. The usual Metropolis simulation@6#
is a direct implementation of this dynamic.

Then-fold way @8,9# is a rejection-free implementation o
the dynamicW(x8ux), and we briefly remind the reader o
this two-part algorithm. First, the number of trials,t, to leave
the current state is computed~the update time!, and second,
one movement is chosen and performed. In this way, ev
©2003 The American Physical Society01-1
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algorithmic step induces a change in the system config
tion, but the dynamic information is preserved.

The first step of then-fold way algorithm consists of gen
erating the update time,t, which is a random variable chose
from the appropriate probability distribution. Definel as the
probability to reject all movements,

l512(
x8

W~x8ux!, ~4!

and the probabilityp(t) to leave statex after t steps is a
geometric distribution@9#,

p~ t !5l t21~12l!. ~5!

A so-called integral generator@11# can be constructed to pro
duce t with this distribution. DefineI (t)ª12(k51

t p(k)

5l t@ I (0)ª1#, and let r̃ be a random number uniform o
(0,1). The number of steps until the next update,t, is then
determined by

I t21< r̃ ,I t and t5 b lnr̃

lnl c11, ~6!

wherebxc denotes the integer part ofx.
In the second step of then-fold way algorithm, we must

choose the exit state,x8, from the appropriate probability
distribution. The probability to exit to statex8 from x is

C~x8ux!5
1

12l
W~x8ux!. ~7!

A movement is chosen with this probability by using t
same integral-generator strategy as in the first step of
algorithm. The movements are ordered with indexk ~discrete
degrees of freedom!, and the partial sumsQ(k)
ª(m51

k C(x8ux)m , with Q(0)ª0, are computed. The move

ment k is chosen ifQ(k21)< r̃ ,Q(k), where r̃ is uni-
formly distributed on (0,1). To perform the movement sele
tion in a more efficient way, movements are grouped i
classes, and a two-level search is performed by first select
the classi with probability C( i ux)5(x8P iC(x8ux) and then
selecting the movement (x8u i ) from inside the class with
probability C(x8u i )5C(x8ux)/C( i ux) ~Bayes!. This com-
pletes then-fold algorithm, which is a rejection-free Mont
Carlo algorithm for systems with discrete degrees of fr
dom.

In importance sampling for discrete spin systems@8,9#,
the exit states,x8, are usually grouped into classes by ene
changes, where all movements in classi have the same en
ergy change,DE, and thus the same acceptance rate,Ai . Let
ni be the number of movements in classi. Using T(x8ux)
51/N̂, whereN̂ is the total number of possible movemen
we obtain the classicn-fold way expressions@8#

l512(
i

ni

N̂
Ai , C~ i ux!5

niAi

~12l!N̂
, C~x8u i !5

1

ni
.

~8!
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To apply this rejection-free technique to systems w
continuous degrees of freedom, some ideas employed to
tend the broad histogram method for continuous systems
used @12#. Discrete probability distributions become pro
ability density functions~PDF!, and a discrete choice of
random variable becomes the construction of a random g
erator with its proper distribution. To illustrate this proces
we construct a rejection-free algorithm for the classi
Heisenberg model with Metropolis dynamics. The Ham
tonian is

H52(̂
ij &

$JxXiXj1JyYiYj1JzZiZj%2Hz(
i

Zi , ~9!

where sW i5Xix̂1Yi ŷ1Zi ẑ is a spin of unit length on site
i , Hz is the magnitude of an external magnetic field in thez
direction,^ i j & represents a nearest-neighbor summation,
Jx , Jy , andJz are coupling constants.

For continuous systems such as the Heisenberg mode
movements form an uncountable set. Withx fixed, T(x8ux)
can be interpreted as a PDF in the configuration space o
system, whereT(x8ux)dx8 is the probability to choose the
new state,x8, inside a small infinitesimal regiondx8, cen-
tered onx8. Let us fix T(x8ux) by choosing all movements
with the same probability as follows. First, a sitei is chosen
with probability 1/N, whereN is the number of sites. Sec
ond, a new orientationsW i8 for the spin ati is chosen uni-
formly on the unit sphere@PDF T(u8,w8u i )51/4p]. This is
equivalent to generatingz8[cosu8 uniformly on the interval
@21,1# and w8 uniformly on the interval@0,2p), where
(z8,w8) are the coordinates ofsW i8 in some cylindrical coor-

dinate system@12#. Let (z,w) be the coordinates ofsW i in the
same system. The total PDF of this movement (z8,w8uz,w) i
is, therefore,T(z8,w8uz,w) i51/4pN, and clearly,T(xux8)
5T(x8ux).

The energy change of this movement is

DE5~sW i2sW i8!•SW i , ~10!

SW i5FJx(
j

Xj G x̂1FJy(
j

Yj G ŷ1FHz1Jz(
j

Zj G ẑ.

Here,j denotes a sum over the nearest neighbors of sitei. If
we rotate to a coordinate system with thez axis parallel to
SW i , this energy change reduces toDE52(z82z)Si . There-
fore, from Eq.~3!,

A~z8,w8uz,w! i5H exp@~z82z!Si /kBT# if z8,z

1 otherwise.
~11!

Thus,W(z8,w8uz,w) i5(1/4pN)A(z8,w8uz,w) i .
To implement the rejection-free algorithm, we start

computingl for this dynamic,

l5
1

N (
i 51

N

l i , ~12!
1-2
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l i ªE
z8521

1 E
w850

2p

T~z8,w8u i !@12A~z8,w8uz,w! i #dw8dz8

5
~z11!

2
2

kBT

2Si
@12exp„2~z11!Si /kBT…#.

Finally, the value oft to exit from the current state is com
puted from Eq.~6!.

According to Eq.~7!,

C~z8,w8uz,w! i5
1

4pN~12l!
A~z8,w8uz,w! i , ~13!

but for a system with continuous degrees of freedom, it is
possible to group the movements into classes by ene
changes, since these values form a continuous set, an
stead of grouping by energies, we group the movements
sites. The probability to choose a sitei is

C~ i ux!5E
sphere

C~z8,w8uz,w! idz8dw85
12l i

N~12l!
.

~14!
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The search to find which spini changes can be performe
with the same integral-generator strategy described abov

Next, we choose (z8,w8) for the sitei, but since these are
continuous variables, their distribution is described by a P
that, according to the Bayes relation, is given by

C~z8,w8u i !5
1

4p~12l i !
A~z8,w8uz,w! i . ~15!

Since this expression is independent ofw8, this coordinate is
uniformly distributed on the interval@0,2p). In contrast,z8
must be generated with the PDF

f z
i ~z8!5H 1

2~12l i !
exp„~z82z!Si /kBT… if z8,z

1

2~12l i !
otherwise.

~16!

A rejection-free random generator with this distribution c
be constructed by means of the same integral-generator s
egy but on a continuous variable. First, define the integra
Qi~z8! ªE
z9521

z8
f z

i ~z9!dz9

5 H kBT

2~12l i !Si
@exp„~z82z!Si /kBT…21#1V i~z! if z8<z

V i~z!1
~z82z!

2~12l i !
otherwise

~17!

with V i(z)512(12z)/@2(12l i)#. Next, generate a random numberr̃ uniformly distributed on (0,1) and takez8 such that
Qi(z8)5 r̃ ,

z85H z1
kBT

Si
ln$2~12l i !Si@ r̃ 2V i~z!#/kBT11% if r̃<V i~z!

z12~12l i !@ r̃ 2V i~z!# otherwise.

~18!
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Finally, the new values (z8,w8) are transformed back into
Cartesian coordinates and rotated back to the original re
ence axis. Thus both the update time,t, and the exit state,x8,
are chosen, and the rejection-free implementation for a
tem with continuous degrees of freedom is complete.

We tested our rejection-free algorithm by computi
the mean lifetimes of a metastable state for an anisotro
Heisenberg model withJx5Jy51.0 andJz52.0 on a simple
cubic~SC! lattice of size 10310310 with periodic boundary
conditions. The system is initially in a metastable st
with all spins pointing in the2z direction with the externa
field in the opposite direction, and all simulations were p
formed at temperaturesT,Tc , where we have found the
approximate value of the critical temperature to beTc
.3.15Jx . Here, we concentrate on dynamic quantities, su
r-

s-

ic

e

-

h

as the metastable escape time or lifetime,t, which is the
number of Monte Carlo steps per site~MCSS! needed to
obtain a magnetizationMz50. Preliminary results from the
algorithm for static quantities have been presented elsew
@13#.

To improve the efficiency of the site-selection portion
the algorithm, the sites were grouped into superclasse
lines and planes and organized into a three-level tree@14#.
Even with this improved tree search, the steps of
rejection-free algorithm require more computational tim
than the steps of a direct Metropolis implementation.
average, the rejection-free method took 8.769ms to perform
one change, and the direct Metropolis implementation to
1.162ms to make one trial. However, when many trials a
required to make a single change, the rejection-free a
1-3
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rithm is computationally more efficient than the direct imp
mentation.

Figure 1 shows the average lifetimes,^t&, of the meta-
stable state computed by both rejection-free and di
implementations versus 1/T for many values of the externa
magnetic field. As expected, the two methods give ident
results for all temperatures and fields, regardless of
switching mechanism~nucleation regimeHz,6.0, strong-
field regimeHz.6.0). See Ref.@15# for a description of the
switching mechanisms.

We define^t&CPU, directas the average CPU time require
to escape the metastable state, when simulated by the d
implementation, and̂t&CPU, rej-free is similarly defined. Fig-

FIG. 1. Average lifetimes,̂ t&, of the metastable state of a
anisotropic Heisenberg model on a 103 cubic lattice at many
magnetic-field values. Each point represents an average over
independent escapes. Results for both the rejection-free algor
~triangles! and the direct implementation~filled squares! are shown.
The vertical line represents the approximate value ofTc .
li-

,
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ure 2 shows the CPU-time ratio,^t&CPU, direct/^t&CPU, rej-f ree ,
versus 1/T. For T51/100, the rejection-free implementatio
is nearly two orders of magnitude faster than the dir
implementation.

In summary, we have constructed a rejection-free Mo
Carlo algorithm for a system with continuous degrees
freedom which faithfully keeps the dynamic as compared
the direct implementation but is orders of magnitude faste
low temperatures. Our procedure is quite general and ca
applied to other dynamics and other systems with continu
degrees of freedom.
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FIG. 2. CPU time ratio vs 1/T. The external field values are
Hz55.6 ~squares!, Hz55.96 ~circles!, andHz57.0 ~triangles!.
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