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Rejection-free Monte Carlo algorithms for models with continuous degrees of freedom
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We construct a rejection-free Monte Carlo algorithm for a system with continuous degrees of freedom. We
illustrate the algorithm by applying it to the classical three-dimensional Heisenberg model with canonical
Metropolis dynamics. We obtain the lifetime of the metastable state following a reversal of the external
magnetic field. Our rejection-free algorithm obtains results in agreement with a direct implementation of the
Metropolis dynamic and requires orders of magnitude less computational time at low temperatures. The
treatment is general and can be extended to other dynamics and other systems with continuous degrees of
freedom.
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Nucleation and metastability are characteristic behaviorgleisenberg model. Our treatment is completely general and
of dynamical processes for many different fields, from stockcan be extended to other dynamics and other continuous sys-
markets and sociologyl] to parallelization methods for tems.
massively parallel computef€] to chemical reactions and ~ Consider a Markov process with every step consisting of
materials science. Many classical models, when simulatevo parts. First, choose a movement from stateo state
with Monte Carlo methods, also present these behaviors, anél X with probability T(x'|x). Second, accept it with prob-
although the number of steps in the simulation does not ned@bility A(x'|x). The full probability to undergo the move-
essarily correspond directly to experimental time, they givement &’|x) is then
valuable insights into these dynamic phenomena. For in- , , ,
stance, studies on Isif§] and anisotropic Heisenberg mod- WX ) =T BOAX[x). @
els[4] have shown the existence of different metastable del— hi h «di imol ion” ref h
cay regimes for small ferromagnetic particles after a reversal' this paper, the term “direct implementation” refers to the
of the external magnetic field. At low temperatures, singlecommon sele.ct|on_and rejection implementation of the Mar-

kov process, in which two random numbers are used, one for

and multiple droplet nucleation and a strong field regime ar(?fhe selection ok’ and one for the rejection or acceptance of

observed, and recently, indirect experimental evidence of/

these regimes has been four). In the specific case of importance samplifgx’|x) is
Many Monte Carlo dynamics are Markov processes tha_Ehosen to be symmetrid,(x'|x)=T(x|x'), andA(x'[x) is

divide each step into two successive parts: first, a new state {§neq to obtain a desired limit probability distributid®(x),

chosen; second, it is accepted or rejected according to SOMghen the number of steps tends to infinity. This is accom-

criteria. In many cases of interest, the acceptance rates can Bshed by requiring the detailed balance condition,

so small that a huge number of trials is required before a

change is made. Then, a direct implementation of the Monte W(X'|x)P(x)=W(x|x")P(x"). )

Carlo dynamic, one that attempts steps one after the other, is

extremely slow. For instance, Ising models with MetropolisTo obtain the canonical distributio®(x) <exd —E,/kgT], a

dynamics[6] can require 18 trials to leave a metastable widely used choice foA(x’|x) is the Metropolis acceptance

state at low temperatures, and such a simulation would takprobability

10'° minutes[7]. Therefore, techniques to implement the

same dynamic in a faster way are required. A(X'[x)=vmin{1,exf — (Ex —E,)/ksT1}, ()

There exist different techniques to construct rejection-free

implementations of Monte Carlo dynamics for discrete spinwherev is a constant which is the same for glandx’ and

systems, such as thefold way [8,9] and Monte Carlo with is included to ensure that, W(x’|x)<1 for all algorithmic

absorbing Markov chaink7] algorithms(for a review, see steps. For all discussions presented herel was sufficient

[10]). In this paper, we extend thefold way rejection-free  to ensure this condition. The usual Metropolis simulafiéh

technique to systems with continuous degrees of freedoms a direct implementation of this dynamic.

and we construct a rejection-free algorithm for the classical Then-fold way[8,9] is a rejection-free implementation of
the dynamicW(x’|x), and we briefly remind the reader of
this two-part algorithm. First, the number of trialsto leave

*Permanent address: Dpto. desiEa, Univ. Nacional de Colom- the current state is computéthe update timg and second,
bia, Bogota D.C., Colombia. one movement is chosen and performed. In this way, every
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algorithmic step induces a change in the system configura- To apply this rejection-free technique to systems with
tion, but the dynamic information is preserved. continuous degrees of freedom, some ideas employed to ex-
The first step of the-fold way algorithm consists of gen- tend the broad histogram method for continuous systems are
erating the update timé, which is a random variable chosen used[12]. Discrete probability distributions become prob-
from the appropriate probability distribution. Defineas the  ability density functions(PDF), and a discrete choice of a
probability to reject all movements, random variable becomes the construction of a random gen-
erator with its proper distribution. To illustrate this process,
_ , we construct a rejection-free algorithm for the classical
7\_1_2 W(X'[x), ) Heisenberg model with Metropolis dynamics. The Hamil-
tonian is
and the probabilityp(t) to leave statex aftert steps is a
geometric distributior9],

P(O=A"H1-N). (5)
A so-called integral generatpt1] can be constructed to pro- where g7 =Xx+Yiy+Zz is a spin of unit length on site
duce t with this distribution. Definel (t):=1—SL_,p(k) i, H, is the magnitude of an external magnetic field in the
) ~ ' k=1 direction,(ij) represents a nearest-neighbor summation, and
=\'1(0):=1], and letr be a random number uniform on Jy, J,, andJ, are coupling constants.

_% {JXXin-+JinY]-+JZZiZj}—HZZ Zi, 9

(0,1). The number of steps until the next updafgs then For continuous systems such as the Heisenberg model, the
determined by movements form an uncountable set. Witffixed, T(x'|x)
i can be interpreted as a PDF in the configuration space of the
~ nr ) ) -~
I, ,<t<I, and t=|—|+1 6) system, Wh,ergT(>_< |x)dx’ is t.he. propablllty to ch905e the
In\ new statex’, inside a small infinitesimal regiodx’, cen-

. tered onx’. Let us fix T(x'|x) by choosing all movements
where|x] denotes the integer part af . with the same probability as follows. First, a sit&s chosen
In the second step of thefold way algorithm, we must  with probability 1N, whereN is the number of sites. Sec-
choose the exit state’, from the appropriate probability ond, a new orientatiora;i’ for the spin ati is chosen uni-

distribution. The probability to exit to state¢ from x is formly on the unit spher6PDF T(6’,¢’|i)=1/4x]. This is
1 equivalent to generatingl =cos’ uniformly on the interval
C(x’ |x)— W(x [X). (77  [—1,1] and ¢’ uniformly on the interval[0,27), where

(z',¢") are the coordinates cﬁi’ in some cylindrical coor-

A movement is chosen with this probability by using the dinate systeni12]. Let (z,¢) be the coordinates af; in the
same integral-generator strategy as in the first step of theame system. The total PDF of this movemexit ¢'|z, ¢);
algorithm. The movements are ordered with inttediscrete is, therefore,T(z',¢’|z,¢);=1/4nN, and clearly, T(x|x")

degrees of freedom and the partial sumsQ(k) =T(x'|x).
:=3K _ C(X|X)m, with Q(0):=0, are computed. The move-  The energy change of this movement is
ment k is chosen ifQ(k—1)<r<Q(k), whereT is uni- - e,
formly distributed on (0,1). To perform the movement selec- AE=(gi—07)-S, (10
tion in a more efficient way, movements are grouped into
classesand a two-level search is performed by first selecting §= sz X; S JyE v, §+ Hz+3z2 z, 5
i i

the class with probability C(i|x)==,, .;C(x’|x) and then
selecting the movementx{|i) from inside the class with

J

Here,j denotes a sum over the nearest neighbors ofi sife
pletes then-fold algorithm, which is a rejection-free Monte we rotate to a coordinate system with thexis parallel to

Carlo algorithm for SyStemS with discrete degrees of freeéi , this energy Change reducesA& = _(Z’_z)Si . There-

dom. fore, from Eq.(3),
In importance sampling for discrete spin systef@9)],

the exit statesx’, are usually grouped into classes by energy exd(z' —2)S/kgT] if z'<z
changes, where all movements in classave the same en- A(Z',¢'|z,¢)i= ,

1 otherwise.
ergy changeAE, and thus the same acceptance rAte,Let (11)

n; be the number of movements in classUsing T(x'|x)

=1/N, whereN is the total number of possible movements, Thus,W(z',¢’|z,¢);=(L/47N)A(Z',¢'|Z, ¢); .
we obtain the classin-fold way expressiong3] To implement the rejection-free algorithm, we start by
computing\ for this dynamic,
n; . n;A; ) 1
A=1-> =A;, C(i|[x)=——"=, CKX|i)=—. 1 N
i N (1-MN)N n; :_E (12
(8) N <
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1 27 . . L The search to find which spinchanges can be performed
N ==f '7—1J’ _OT(Z @' [N[1=A(Z',¢'|2,¢)i]d¢'dZz with the same integral-generator strategy described above.
B - Next, we chooseZ,¢") for the sitei, but since these are

(z+ 1) kBT continuous variables, their distribution is described by a PDF
) [1 exp(—(z+1)S/kgT)]. that, according to the Bayes relation, is given by
Finally, the value oft to exit from the current state is com- AITI 1 ro ,
puted from Eq.(6). C(z'e'li) 4w(1—)\i)A(Z TALTOE (15

According to Eq.(7),
g a? Since this expression is independentdf this coordinate is

o, 1 o, uniformly distributed on the intervdl0,27). In contrastz’
C(Z'¢ |Z,<P)i=mA(Z @'lze)i, (13 must be generated with the PDF

but fc_)r a system with continuous degrges of freedom, it is not 1 exp(z' —2)S IkgT) if z'<z
possible to group the movements into classes by energy , | 2(1-Ny)
changes, since these values form a continuous set, and in- f(z')= 1
stead of grouping by energies, we group the movements by _— otherwise.
sites The probability to choose a sitas 2(1=n) (16)
Cli|x)= C(Z,¢'|2,¢)dZ d¢’ = 1= . A rejection-free random generator with this distribution can
sphere ' N(1-\) be constructed by means of the same integral-generator strat-

(149 egy but on a continuous variable. First, define the integral

Q@) =[" fizaz

KeT i
A, )Si[exp((z -2)S /kgT)—1]+Qi(2) if z'sz
- (2'-2) | a7
Qi(2)+—2(1_)\i) otherwise

with Q;(z)=1—(1—-2)/[2(1—\;)]. Next, generate a random numizeuniformly distributed on (0,1) and take such that
Qi(z,) :?v

L z+ k;—TIn{2(1—Ai)3[7—Qi(z)]/kBT+ 1} ifr<0;(2) 8

z+2(1-\)[r=Q(2)] otherwise.

Finally, the new valuesZ,¢’') are transformed back into as the metastable escape time or lifetime,which is the
Cartesian coordinates and rotated back to the original referumber of Monte Carlo steps per si(MICSS needed to

ence axis. Thus both the update timegnd the exit state’, obtain a magnetizatioM,=0. Preliminary results from the
are chosen, and the rejection-free implementation for a sysslgorithm for static quantities have been presented elsewhere
tem with continuous degrees of freedom is complete. [13].

We tested our rejection-free algorithm by computing To improve the efficiency of the site-selection portion of
the mean lifetimes of a metastable state for an anisotropithe algorithm, the sites were grouped into superclasses of
Heisenberg model witd,=J,=1.0 andJ,=2.0 on a simple lines and planes and organized into a three-level [tieg.
cubic (SO lattice of size 1& 10X 10 with periodic boundary Even with this improved tree search, the steps of the
conditions. The system is initially in a metastable staterejection-free algorithm require more computational time
with all spins pointing in the-z direction with the external than the steps of a direct Metropolis implementation. On
field in the opposite direction, and all simulations were per-average, the rejection-free method took 8.¢&9to perform
formed at temperature$<T., where we have found the one change, and the direct Metropolis implementation took
approximate value of the critical temperature to g  1.162us to make one trial. However, when many trials are
=3.15],. Here, we concentrate on dynamic quantities, suclrequired to make a single change, the rejection-free algo-

026101-3



MUNOZ, NOVOTNY, AND MITCHELL PHYSICAL REVIEW E 67, 026101 (2003

' 100
I
6 1]
10 |
I
s
107 ¢ !
o L
~ ! ﬁ 10
210" ¢ | o
Q | qE.)
5103 L =
A ' !
Voo 2
L] S 1¢
107 b
I
10 L
[l
100 1 1 1 1 0 ! L
1 10 100 0 1 10 100
1T 1/T

FIG. 1. Average lifetimes({r), of the metastable state of an FIG. 2. CPU time ratio Vs T. The external f"?ld values are
anisotropic Heisenberg model on aS31@ubic lattice at many H,=5.6 (squares H,=5.96 (circles, andH,=7.0 (triangles.
magnetic-field values. Each point represents an average over 100
independent escapes. Results for both the rejection-free algorithijye 2 shows the CPU-time ratior) cpy, girec! {
(triangles and the direct implementatidfilled squaresare shown. '
The vertical line represents the approximate valud of

7'>CPU, rejfree;

versus IT. For T=1/100, the rejection-free implementation

is nearly two orders of magnitude faster than the direct

implementation.

rithm is computationally more efficient than the direct imple- |n summary, we have constructed a rejection-free Monte

mentation. Carlo algorithm for a system with continuous degrees of
Figure 1 shows the average lifetimes;), of the meta-  freedom which faithfully keeps the dynamic as compared to

stable state computed by both rejection-free and directhe direct implementation but is orders of magnitude faster at

implementations versus TLfor many values of the external |ow temperatures. Our procedure is quite general and can be

magnetic field. As expected, the two methods give identicahpplied to other dynamics and other systems with continuous
results for all temperatures and fields, regardless of thgegrees of freedom.

switching mechanisni{nucleation regimeH,<6.0, strong-

field regimeH,>6.0). See Refl15] for a description of the The authors thank P. A. Rikvold for useful discussions.

switching mechanisms. J.D.M. thanks H. J. Herrmann for hospitality. This work is
We define(7)cpy dgirect@s the average CPU time required partially supported by the Deutscher Akademischer Austaus-

to escape the metastable state, when simulated by the direzhdienst(DAAD) through No. A/96/0390, and by the NSF

implementation, andr)cpy, rej-freciS Similarly defined. Fig-  through Grant No. DMR-9871455.

[1] S. Moss de Oliveira, P.M.C. de Oliveira, and D. Staufterp- 17, 10(1975.
lution, Money, War, and Computers — Non-Traditional Appli- [9] M.A. Novotny, Comput. Phys9, 46 (1995.
cations of Computational Statistical PhysicéTeubner, [10] M.A. Novotny, Int. J. Mod. Phys. @0, 1483(1999.

Stuttgart-Leipzig, 1999 [11] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flan-
[2] G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold, nerly, Numerical Recipes in Fortrar2nd ed.(Cambridge Uni-
Phys. Rev. Lett84, 1351(2000. versity Press, New York, 1992
[3] P.A. Rikvold and B.M. Gorman, iAnnual Reviews of Com- [12] J.D. Muroz and H.J. Herrmann, Int. J. Mod. Phys.10, 95
putational Physics,ledited by D. StauffeWorld Scientific, (1999; in Computer Simulation Studies in Condensed Matter
Singapore, 199 pp. 149-192. Physics Xl] edited by D.P. Landau, S.P. Lewis, and H.-B.
[4] D. Hinzke and U. Nowak, Phys. Rev. B3, 265 (1998; U. Schiitler (Springer Verlag, Heidelberg, 199%p. 174-178.

Nowak and D. Hinzke, J. Appl. Phy®5, 4337 (1999; U. [13] J.D. Munoz, M.A. Novotny, and S.J. Mitchell, i@omputer
Nowak, R.W. Chantrell, and E.C. Kennedy, Phys. Rev. Lett. Simulation Studies in Condensed Matter Physics,>dtlited

84, 163(2000. by D.P. Landau, S.P. Lewis, and H.-B. Stther (Springer Ver-
[5] W. Wernsdorferet al, Phys. Rev. Lett78, 1791(1997). lag, Heidelberg, 2000 pp. 92-97.
[6] N. Metropolis,et al, J. Chem. Phys21, 1087 (1953. [14] J.L. Blue, I. Beichl, and F. Sullivan, Phys. Rev.5, R867
[7] M.A. Novotny, Phys. Rev. Lett74, 1 (1995. (1995.

[8] A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, J. Comput. Phys. [15] M.A. Novotny, Int. J. Mod. Phys. @0, 1483(1999.

026101-4



